Providing Hop-by-Hop Authentication and Source Privacy in Wireless Sensor Networks

Yun Li[†], Jian Li[†], Jian Ren[†] and Jie Wu[‡]

[†]Department of ECE, Michigan State University [‡]Department of CIS, Temple University

March 26, 2012

·∢ ∃ >

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Outline

- Introduction
 - Message Authentication
 - Existing Algorithms
- Proposed Scheme
 - Main Idea
 - Terminology
 - Proposed Source Anonymous Message Authentication (SAMA) Scheme

 $\mathcal{A} \mathcal{A} \mathcal{A}$

- AS Selection and Source Privacy
- Operation Performance Analysis
 - Theoretical Performance Analysis
 - Experimental Performance Analysis

Message Authentication

System Model and Assumptions

- A wireless sensor network consists of a large number of sensor nodes.
- After deployment, the sensor nodes may be captured and compromised by attackers.
- A security server (SS) is responsible for generating, storage and distribution of the security parameters.
- SS will never be compromised.

Message Authentication

- Plays a key role in thwarting unauthorized and corrupted packets from being circulated in networks.
- Saves precious sensor energy.

Existing Algorithms

Polynomial Based Message Authentication

- The idea is similar to threshold secret sharing.
- Advantages: The scheme offers information theoretic security.
- Disadvantages: When the number of messages transmitted is larger than the threshold, the polynomial can be fully recovered and the system is completely broken.

Recent Anonymous Communication Protocol

- The idea is based on ring signatures.
- Advantages: This protocol enables the message sender to generate a source anonymous message signature with content authenticity assurance.
- Disadvantages: The original scheme has very limited flexibility and very high complexity.

Main Idea

Main Idea

- Apply the optimal modified ElGamal signature (MES) scheme on elliptic curves.
- Propose an unconditionally secure and efficient source anonymous message authentication (SAMA) schemes.

Terminology

SAMA

A SAMA consists of the following two algorithms:

- Generate (m, Q₁, Q₂,...,Q_n): Given a message m and the public keys Q₁, Q₂,...,Q_n of the AS (ambiguity set)
 S = {A₁, A₂,...,A_n}, the actual message sender
 A_t,1 ≤ t ≤ n, produces an anonymous message S(m) using its own private key d_t.
- Verify S(m): Given a message m and an anonymous message S(m), which includes the public keys of all members in the AS, a verifier can determine whether S(m) is generated by a member in the AS.

Terminology

Modified ElGamal Signature Scheme (MES)

- Key generation algorithm: Let p be a large prime and g be a generator of Z_p^* . Both p and g are made public. For a random private key $x \in Z_p$, the public key y is computed from $y = g^x \mod p$.
- Signature algorithm: One chooses a random $k \in Z_{p-1}$, then computes the exponentiation $r = g^k \mod p$ and solves s from $s = rxh(m, r) + k \mod (p-1)$, where h is a one-way hash function. The signature of message m is defined as the pair (r, s).
- Verification algorithm: The verifier checks whether the signature equation $g^s = ry^{rh(m,r)} \mod p$: If the equality holds true, then the verifier Accepts the signature, and Rejects otherwise.

Proposed MES Scheme on Elliptic Curves

Proposed MES Scheme on Elliptic Curves

- Let p > 3 be an odd prime. An elliptic curve E is defined as $E: y^2 = x^3 + ax + b \mod p$, where $a, b \in \mathcal{F}_p$, and $4a^3 + 27b^2 \not\equiv 0 \mod p$.
- The set $E(\mathcal{F}_p)$ consists of all points $(x, y) \in \mathcal{F}_p$ on the curve, together with a special point \mathcal{O} , called the point at infinity.
- $G = (x_G, y_G)$ is a base point on $E(\mathcal{F}_p)$ whose order is a very large value N.
- User A selects a random integer d_A ∈ [1, N − 1] as his private key. Then, he can compute his public key Q_A from Q_A = d_A × G.

Proposed MES Scheme on Elliptic Curves

Signature Generation Algorithm

For Alice to sign a message m, she follows these steps:

- 1) Select a random integer k_A , $1 \le k_A \le N 1$.
- 2) Calculate $r = x_A \mod N$, where $(x_A, y_A) = k_A G$. If r = 0, go back to step 1.
- 3) Calculate $h_A \leftarrow h(m, r)$, where h is a cryptographic hash function, such as SHA-1, and $\leftarrow l$ denotes the l leftmost bits of the hash.
- 4) Calculate $s = rd_Ah_A + k_A \mod N$. If s = 0, go back to step 2.
- 5) The signature is the pair (r, s).

Proposed MES Scheme on Elliptic Curves

Signature Verification Algorithm

Bob can follow these steps to verify the signature:

- 1) Verify that r and s are integers in [1, N 1]. If not, the signature is invalid.
- 2) Calculate $h_A \leftarrow h(m, r)$, where h is the same function used in the signature generation.
- 3) Calculate $(x_1, x_2) = sG rh_A Q_A \mod N$.
- 4) The signature is valid if $r = x_1 \mod N$, invalid otherwise.

Proposed SAMA on Elliptic Curves

Proposed SAMA on Elliptic Curves

- Alice wishes to transmit a message *m* anonymously from her network node to any other nodes.
- The AS includes n members, A_1, A_2, \ldots, A_n , e.g., $S = \{A_1, A_2, \ldots, A_n\}$, where the actual message sender Alice is A_t , for some value $t, 1 \le t \le n$.
- In this paper, we will not distinguish between the node A_i and its public key Q_i . Therefore, we also have $S = \{Q_1, Q_2, \dots, Q_n\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆ ○ ◆

Proposed SAMA on Elliptic Curves

Authentication Generation Algorithm

The SAMA of the message m is defined as: S(m) $(m, S, r_1, y_1; \ldots, r_n, y_n, s)$ after the following steps:

Select a random and pairwise different k_i for each 1 ≤ i ≤ n − 1, i ≠ t and compute r_i from (r_i, y_i) = k_iG.
 Choose a random k_i ∈ Z_p and compute r_t from (r_t, y_t) = k_tG − ∑_{i≠t} r_ih_iQ_i such that r_t ≠ 0 and r_t ≠ r_i for any i ≠ t, where h_i ← h(m, r_i).
 Compute s = k_t + ∑_{i≠t} k_i + r_td_th_t mod N.

10

Proposed SAMA on Elliptic Curves

Authentication Verification Algorithm

Bob can follow these steps to verify the signature:

- 1) Verify that $r_i, y_i, i = 1, \dots, n$ and s are integers in [1, N-1]. If not, the signature is invalid.
- 2) Calculate $h_i \leftarrow h(m, r_i)$, where h is the same function used in the signature generation.
- 3) Calculate $(x_0, y_0) = sG \sum_{i=1}^{n} r_i h_i Q_i$
- 4) The signature is valid if the first coordinate of $\sum_{i} (r_i, y_i)$ equals x_0 , invalid otherwise.

Proposed SAMA on Elliptic Curves

Remark 1

It is apparent that when n = 1, SAMA becomes a simple signature algorithm.

Theorem 1

The proposed source anonymous message authentication scheme (SAMA) can provide unconditional message sender anonymity.

Theorem 2

The proposed SAMA is secure against adaptive chosen-message attacks in the random oracle model.

AS Selection and Source Privacy

AS Selection and Source Privacy

- Before a message is transmitted, the message source node selects an AS from the public key list in the SS as its choice.
- The adversary is unable to distinguish whether the previous node is the actual source node or simply a forwarder node.
- Therefore, the selection of the AS should create sufficient diversity.

Performance Analysis

Performance Analysis

- We compare our proposed scheme with the bivariate polynomial-based symmetric-key scheme in both theoretical aspect and experimental aspect.
- A fair comparison of our proposed scheme and the bivariate polynomial scheme should be performed with n = 1.

・ロン ・雪 ・ ・ 喧 ・ ・ 同

 \mathcal{A}

Theoretical Performance Analysis

Bivariate Polynomial Scheme

The secret bivariate polynomial is defined as

$$f(x,y) = \sum_{i=0}^{d_x} \sum_{j=0}^{d_y} A_{i,j} x^i y^j$$

- Considering the message length and the computational complexity, d_x and d_y should be as short as possible.
- The intruders can recover the polynomial f(x, y) via Lagrange interpolation if one of the two things below happens:
 - Either more than $d_y + 1$ messages transmitted from the base station are received and recorded by the intruders
 - Or more than $d_x + 1$ sensor nodes have been compromised.
- This property requires that both d_x and d_y be very large.

Theoretical Performance Analysis

Summary of SAMA's Advantages

- For n = 1, our scheme can provide at least the same security as the bivariate polynomial-based scheme.
 - Our scheme can provide the authentication without the threshold constrain.
 - Our scheme is proved to be secure in the random oracle model.
- For n > 1, we can provide extra source privacy benefits.
 - Our design enables the SAMA to be verified through a single equation without individually verifying the signatures.
 - The secure is unconditional. Every node in the AS has the equal probability of sending the messages.

Parameter Setup

- The bivariate polynomial-based scheme is a symmetric-key based implementation, while our scheme is based on ECC.
- If we choose the key size to be *l* for the symmetric-key cryptosystem, then the key size for our proposed ECC will be 2*l*.
- We choose five security levels, which are indicated by the symmetric-key sizes *l*: 24bit, 32bit, 40bit, 64bit, and 80bit.
- The comparable key sizes of our scheme are 48bit, 64bit, 80bit, 128bit, and 160bit, respectively.

Computational Overhead

We first performed simulation to measure the process time in the 16-bit, 4 MHz TelosB mote.

		Polyno	mial b	ased ap	proach		Proposed approach										
	$d_x, d_y = 80$		$d_x, d_y = 100$		$d_x, d_y = 150$		n = 1		n = 10		n = 15		n = 20				
	Gen	Verify	Gen	Verify	Gen	Verify	Gen	Verify	Gen	Verify	Gen	Verify	Gen	Verify			
l = 24	9.31	0.25	14.45	0.31	31.95	0.46	0.24	0.53	4.24	2.39	6.16	3.51	8.38	4.44			
l = 32	12.95	0.33	20.05	0.41	44.60	0.62	0.34	0.80	5.99	3.32	8.92	5.05	12.19	6.42			
l = 40	13.32	0.35	20.57	0.44	45.73	0.65	0.46	1.05	8.03	4.44	11.94	6.71	16.18	8.50			
l = 64	21.75	0.57	33.64	0.71	74.85	1.06	1.18	1.77	20.53	11.03	30.12	16.41	41.44	21.10			
l = 80	26.40	0.70	41.03	0.88	90.86	1.30	1.46	2.22	25.58	13.90	37.66	20.96	50.96	26.18			

TABLE IPROCESS TIME (S) FOR THE TWO SCHEMES (16-BIT, 4 MHZ TELOSB MOTE)

Computational Overhead

Below is the comparison of memory consumption in the 16-bit, 4 MHz TelosB mote.

TABLE II										
MEMORY (KB) AND TIME (S) CONSUMPTION FOR THE TWO SCHEMES (TELOSB) (F STANDS FOR FLASH MEMORY).										

	Polynomial based approach										Proposed approach											
	$d_x, d_y = 80$		$d_x, d_y = 100$			$d_x, d_y = 150$			n = 1			n = 10			n = 15			n = 20				
	ROM	RAM	F	ROM	RAM	F	ROM	RAM	F	ROM	RAM	F	ROM	RAM	F	ROM	RAM	F	ROM	RAM	F	
l = 24	21	3	26	21	4	40	26	4	90	21	1	0	21	2	0	21	2	0	21	2	0	
l = 32	21	4	39	21	5	60	26	6	135	21	2	0	21	2	0	21	2	0	21	2	0	
l = 40	21	4	39	21	5	60	26	6	135	21	2	0	21	2	0	21	2	0	21	3	0	
l = 64	21	6	64	21	7	100	26	9	225	21	2	0	22	3	0	22	3	0	22	3	0	
l = 80	21	7	77	21	8	120	26	10	270	20	2	0	21	3	0	21	3	0	21	4	0	

Performance Comparison

The simulation results for energy consumption, transmission delay and delivery ratio were carried out in ns-2.

Conclusion

In the paper, we

- develop a source anonymous message authentication (SAMA) scheme on elliptic curves that can provide unconditional source anonymity.
- offer an efficient hop-by-hop message authentication mechanism without the threshold limitation.
- devise network implementation criteria on source node privacy protection in WSNs.
- provide extensive simulation results under ns-2 and TelosB on multiple security levels.
- demonstrate that our scheme not only has efficiency in authentication but also can provide extra source privacy.

Thank you! Questions?